KMAP3 is a very powerful Boolean calculator is a very powerful tool for evaluating, calculating of Boolean Algebra expressions. The **best** Boolean calculator on internet ! Even wolframalpha.com does not have such powerful tool. This software is a very useful tool for testing **DeMorgan** theorems and investigating **set theory** identities. In addition to handling of Boolean algebra calculation it can also handle more basic **Karnaugh Map**(KMAP) problems, in which better optimization are done. This Boolean calculator can handle terms with 4 up to 16 variables. No of vars can be controlled by the **up/dn** switch box. Currently up to 16 var terms are allowed. Instead of *Venn diagram* a KMAP diagram is used for better visualization of the terms and expressions. This app is also very useful for digital electronic engineers to optimize their digital circuitry. Some previous knowledge of Boolean Algebra and variable name format readers are assumed to have.

Basic Operation.

This calculator has 2 input editors X and Y and an output editor Z. The Z edit box is updated when corresponding Boolean operations AND, OR, NOT icons are clicked. B1(buffer 1) and B2(buffer 2) edit boxes are simply 2 temporary buffers to store the intermediate results. The OZ (Optimized Z) is just to notify you that the value in Z edit box can be further optimized and reduced to shorter expressions. Using drag and drop values of edit boxes X, Y, Z, B1 and B2 and OZ can be copied into another edit box without using copy and paste. Drag & Drop click on the yellow labels.

In case of NOT(complement) if you don't want the NOT value overwrite the Z input, you can type the Boolean in the Y edit box, but you must enable *auto calculation* by clicking on its menu. Then as you type your Boolean expression in the Y input the Z input automatically updated with the complement value(NOT) of Y input. Notice when NOT icon is clicked the X edit box is automatically disabled and you can not type in it, unless you click on another Boolean icon.

Important in the bottom part of screen you see a grid which is automatically updated with the Karnaugh Map boolean expression in the active edit box(edit box that has the focus) as you type in to give you a visual feeling how the KMAP looks like. As it was mentioned KMAP grid is better boolean representation than **Venn Diagram**. **Some examples**

In these example lo state of logic is presented lower case characters for example instead of \mathbf{A}' we use **a** For all these for examples we assume X=Ab+Bc and Y=aB+bC

1-Boolean **AND** operation. Click on the AND icon. You will see Z input is Z=AbC+aBc. If in the main menu you select Auto \rightarrow calculation then you don't need to click on the AND icon. As you type the Z output box is automatically updated with logical AND value of X AND Y. You can think of Z as the raw out put while OZ is optimized value of Z. If you want a NAND operation click on NOT and you get Z=AB+Ac+BC+aC+ab+bc

2-Boolean **OR** operation. Click on **OR** icon . The new value of Z=Ab+Bc+aB+bC. If you want the **NOR** operation then you click on NOT and you get Z=ABC+abc. Notice in the case of **OR** the most optimized answer is Z=Ab+Bc+aC. Which is obtained by using more comprehensive **Karnaugh Map**(KMAP) method of simplification and optimization. To use this advanced optimization just Click on Boolean \rightarrow Z input to kmap grid and then click on the **Simplify** in that form main menu.

3-Boolean **XOR** operation . Click on **XOR** icon. The new value of Z=ABc+Abc+aBC+abC but in the optimized edit box(OZ) you will see value of Ac+aC which is the same as A **XOR** C. If you want **XNOR** instead just click on NOT icon again and you will see result AC+ac . But in this case the optimized answer was calculated in the first run.

Boolean calculator- AND-NAND-OR-NOR-XOR-NOT	Commands available from Boolean		
ShowKmap Boolean Check Help Auto About Projects Exit Invert X Invert Y Invert Y Invert Z Invert Z <td< td=""><td>menu . The last menu item will allow you to save the visual image of current edit box Karnaugh Map (KMAP) representation. Later we will talk about the 4th item in the menu Copy Z edit to KMAP grid . Which will invoke the KMAP editor, that will allow you to do a better optimization and enter the data by clicking on KMAP grid instead of typing it. Clicking on this menu the same effect as ShowKmap but the data will be copied.</td></td<>	menu . The last menu item will allow you to save the visual image of current edit box Karnaugh Map (KMAP) representation. Later we will talk about the 4 th item in the menu Copy Z edit to KMAP grid . Which will invoke the KMAP editor, that will allow you to do a better optimization and enter the data by clicking on KMAP grid instead of typing it. Clicking on this menu the same effect as ShowKmap but the data will be copied.		
Boolean calculator- AND-NAND-OR-NOR f ShowKmap Boolean Check Help Auto At t 0 X Input syntax Y Input syntax Y t Y Z Input syntax Z Input syntax Z	Commands available from Check menu to check for Boolean syntax error.		
Boolean calculator- AND-NAND-OR-NOR-XOR-NOT ShowKmap Boolean Check Help Auto About Project Boolean Calculation Calculation Calculation Calculation Calculation	Auto Calculation will calculate the Z input as you type in the X or Y inputs without needing to click on any icon. If you want this handy feature make sure the right icon was clicked on first.		

Now lets look at different menu items

By clicking the **Projects** menu simply a new form will popup that have the boolean equations of a 4 bit adder. Here you will see one complex project of 8 input. This page is very experimental and still under construction and

consideration. It is mainly for information only.

The first menu item **ShowKmap** is a very important part of this application. The **ShowKmap** menu is very similar to **Copy Z edit to KMAP grid** that was mentioned in the **boolean menu**. When you click on it this form will popup. This form using File menu will allow you to save the KMAP data as both text and binary file.

Elle Edit Simplify Projects Hilite Help Exit Main KMAP Input Editor ABCDEFGHIJKLMNOP ABC AB	🛄 KMAP3 / Boolean Algebra simplification program.							
Main KMAP Input Editor F V ABCDEF GHIJKLIMNOP Image: Constraint of the state of the stat	Eile Edit Simplify Projects HiLite Help Exit							
ABCDEFGHIJKLMNOP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0%	L Main KMAP Input Editor E Upper case for HI , Lower case for LO							
1 1	ABCDEFGHIJKLMNOP							
2 3 48C 3 4 4 5 6 ABC 7 ABC 8 ABC 9 ABC 10 ABC 11 ABC 12 ABC 13 ABC 14 ABC 15 ABC 16 ABC 17 V								
3 ABC 4 ABC 5 ABC 6 ABC 7 ABC 8 ABC 9 ABC 10 ABC 11 ABC 12 ABC 13 ABC 14 ABC 15 ABC 16 ABC 17 V 0% V								
4 ABC 5 ABC 6 ABC 7 ABC 8 ABC 9 ABC 10 ABC 11 ABC 12 ABC 13 ABC 16 ABC 17 V	3 ABC							
5 ABC 6 ABC 7 ABC 8 ABC 9 ABC 10 ABC 11 ABC 12 ABC 13 ABC 14 ABC 15 ABC 16 ABC 17 V	4 ABC							
6 ABC 7 ABC 8 ABC 9 ABC 10 ABC 11 ABC 12 ABC 13 ABC 14 ABC 15 ABC 16 ABC 17 V	5 ABC							
7 ABC 8 ABC 9 ABC 10 ABC 11 ABC 12 ABC 13 ABC 14 ABC 15 ABC 16 ABC 17 V	6 ABC							
8 9 10 11 11 12 13 14 15 16 16 17	7 ABC							
9 10 11 11 12 13 13 14 15 16 16 17	8 ABC							
	ABC							
11 12 13 14 15 16 17	10							
12 13 14 15 16 17	11							
12 13 14 15 16 17	12							
13 14 15 16 17 0%								
15 16 17 0%	14							
	15							
	16							
	17							

In the left you see an editor box in which each line can only contain one term only. You can not type + sign in it. And in the right you see the KMAP visual presentation of the terms in the left hand editor. Unlike the editor in the calculator form you will see true visual presentation of *low logic* by seeing an upper case character with a bar above it. To see how this form works lets go back to the 2^{nd} example using **OR** operation. We have X=Ab+Bc, Y=aB+bC the Z=Ab+Bc+aB+bC. But we are not sure if Z is really optimized. By clicking on the **Copy Z edit to KMAP grid** you will see this populated form

The menus of this form are

KMAP3 / Boolean Algebra File Edit Simplify Projects Open Boolean Text File Save as Text File Save as Text File Save as Text File Get Clipbrd Exit D	Edit Simplify Projects HiLite Find Boolean String Clear all checks Set all checks Clear ALL KMAP Sort(case sen) Sort(case insen) Clear Checked Rows Delete Checked Rows Put Random data Copy KMAP to calc Z input	All the features and commands are available from the main menu, which are self explanatory. The 4 th item in the main meu is HiLite . By clcking on this menu the terms that are checked in the left editor are temporary flashed yellow for better visual understanding and distinguishing and overlaping that boolean terms can have.
---	---	---

Image: Mapping Algebra simplification program. File Edit Simplify Projects Hilte Help Exit	The terms Ab, Bc, aB, bC are displayed in the left editor with correct boolean visual
Main_KMAP_Input Editor F ABCDEFGHIJKLMNOP ABC ABC ABC BC ABC ABC ABC	presentation. And in the right side the KMAP visual representation . In this example 6 variables from AF are used but we could have simply just use 4 variables from A to D using the <i>vars</i> switch . In-order to simplify and optimize this KMAP to the max now you click on the Simplify menu. You will see the new screen bellow
Action ABCDEFGHIJKLMNOP Min Max AB 2 2 AB 2 2 BC 2 2 BC 2 2 Clear CHK Test Remove Remove HiLite Validity Test Undo last Show Optimized Quick Optimize Omin Max Alpha Length Find bool string Label3	This is the screen where unlike calculator which uses string comparison and reduction method used a binary brute force calculations are done to find the minimized number of terms. We notice 2 more new terms Ac and aC are also added because they are valid terms that will cover the cells of KMAP. Here you can do some manual tweaking to see which terms can be removed or click of Show Optimized to see which one of these 6 terms can be removed. If you click on Show Optimized you will see the same screen with suggested terms that can be removed.

Action KMP3 Simplification Results E ✓ ABCDEFGHIJKLMNOP Min Max 1 AB 2 ✓ AC 3 BC 2 ✓ AC 3 BC 4 ĨB 5 ĨC 6 BC 2 2 2 Z 4 ĨB 2 2 3 BC 2 2 4 ĨB 2 2 4 ĨB 2 2 5 ĨC 2 2 6 BC 2 2 1 Intervet 1 Intervet 1 Intervet 1 Intervet 2 2 2 Intervet 2 2 1 Intervet 2 2 2 2 2 2 2 2	The software will suggest to you that 2 nd (Ac), 4 th (aB) and 6 th (bC) terms can be removed. Next you click on remove . This KMAP is now optimized to Ab+Bc+aC . By clicking on the Action menu you see selection of choices with where and how save and copy these 3 optimized terms.
--	---

In the 2nd example given X=Ab+Bc+Cd+De+Ef and (1)**Y=aB+bC+cD+dE+eF** find Z=X **XOR** Y. The Z output of this XOR is Z=ABCDEf+ABCDef+ABCdef+ABcdef+ABcdef+Abcdef+aBCDEF+abcDEF+abcDEF+abcdEF+abcdeF and OZ=ABCDf+ABCef+ABdef+Acdef+aCDEF+abDEF+abcEF+abcdF. Z has 10 and OZ has 8 terms. We Click on the menu Boolean- \rightarrow Copy Z edit to kmap grid. We will see the KMAP for with populated date

iii KM	IAP3 / Boolean Algebra simplifi	cation program		_		Next we will click on the Simplify menu
<u>F</u> ile	<u>E</u> dit <u>S</u> implify <u>P</u> rojects Hi <u>i</u> Lite <u>H</u>	elp E <u>x</u> it				and we will see a form that has a new
L	Main KMAP Input Editor	Upper case	for HI, Lowe	er case for	LO	optimized solution with 8 terms
	ABCDEFGHIJKLMNOP	. <u>11X01</u>				
1	ABCDEF					
2	ABCDĒĒ	ABC				
3	ABCDEF	ĀBC				
4	ABCDEF	ABC				
5	ABCDEF	ABC				
6	ĀBCDEF	ABC				
7	ĀBCDEF					
8	ĀBĒDEF					
9	ĀBCDEF					
10	ĀBCDĒF					
11		-1				
	100% 10 Strs imported	2	52 Strs proce	sed 0 Sec		

Z=ABCDf+ABCef+Acdef+aCDEF+abDEF+abcdF has only 6 terms. To double check this calculation we can use the Boolean identity X= (X xorY) xor Y where X=ABCDf+ABCef+Acdef+aCDEF+abDEF+abcdF and Y=Ab+Bc+Cd+De+Ef . X xor Y should give us Z=aB+bC+cD+dE+eF . But we will notice Z=AbC+AbD+AbE+AbF+BcD+BcE+BcF+CdE+CdF+DeF+aBc+aCDEF+aCd+aDe+aEf+abDEF+abcdF+bCd+b De+bEf+cD+cEf+dEf and OZ=aB+aC+aD+aE+bC+bD+bE+bF+cD+cE+cF+dE+dF+eF , although both look very different than aB+bC+cD+dE+eF but indeed they are the same. With the same method we copy the OZ data into the KMAP form and we will see it populated

Next we click on Show Optimize	ed	
KMAP Simplification Results ▲BCDEFGHIJKLMNOP Min Max ▲B 1 7 BC 1 8 CD 1 9 DE 1 8 EF 1 7	E Close Tot=15 Clear CHK Test Remove Remove	As we the final optimization result is aB+bC+cD+dE+eF the same as (1)Y=aB+bC+cD+dE+eF
▲ I I I ✓ ÃC 2 8 ✓ BD 2 9 ✓ ČE 2 9 ✓ ĎF 2 8 ✓ ĎF 2 8 ✓ ĎF 3 9 ✓ ŠE 3 9 ✓ ČF 3 9 ✓ ÃE 4 9 ✓ ŠF 4 9	HiLite Validity Test Undo last Show Optimized Quick Optimize	
	C Alpha	

If we copy the Z data in the KMAP form, we will see the a different populated form with different terms, but same kmap grid.

The digital circuit representation for AND ,NAND, NOT ,OR, NOR, XOR are								
AND	NAND	NOT	OR	NOR	XOR			
^A B→Q	≗⊒_)⊶∘		^A B→→−Q	^A B→→→				
Using the Boolean calculator it is easy to establish these identities using set theory notation $\cup = OR \cap = AND \oplus = XOR$ in the examples sometimes we use XOR abbreviation, sometimes \oplus symbol								
$X=a \cup b \cup c \cup d i$ $Y=A \cup B \cup C \cup D$	s equivalent to be is equivalent to be	oolean notation X=a+ oolean notation X=A-	b+c+d equi X= +B+C+D equi X=	⁼a OR b OR c OR d =A OR B OR C OR	D			
$X=a\cap b\cap c\cap d$ is $Y=A\cap B\cap C\cap D$ is	equivalent to X= equivalent to X=	abcd equivalent 2 ABCD equivalent 2	X=a AND b AND c X=A AND B AND C	AND d C AND D				
Example 1 Assume X=a+b+c+d and Y=A+B+C+D X AND Y=Ab+Ac+Ad+Bc+Bd+Cd+aB+aC+aD+bC+bD+Cd using basic optimization X AND Y=Ab+Bc+Cd+aD+Ac A better optimization using KMAP form X NAND Y=ABCD+abcd X OR Y =1 X XOR Y =ABCD+abcd NOT(X XOR Y)=Ab+Bc+Cd+aD+Ac (Ab+Bc+Cd+aD+Ac) XOR (a+b+c+d)=ABCD (Ab+Bc+Cd+aD+Ac) XOR (A+B+C+D)=abcd								
Notice in this exam	nple X XOR Y=2	X NAND Y						
Example 2 Assume X=a+bc+d and Y=A+BC+D X AND Y =Abc+Ad+BCd+aBC+aD+bcD using basic optimization X AND Y =Abc+Ad+BCd+aD A better optimization using KMAP form X NAND Y=ABD+ACD+abd+acd X OR Y =1 X XOR Y =ABD+ACD+abd+acd								
Notice also in this	Notice also in this example X XOR $Y = X$ NAND Y							
Example 3 Assume X=abc+bcd+acd+abd and Y=ABC+BCD+ACD+ABD X AND Y=0 X OR Y=ABC+ABD+ACD+BCD+abc+abd+acd+bcd X NOR Y=ABcd+AbCd+AbcD+aBCd+aBcD+abCD X XOR Y=ABC+ABD+ACD+BCD+abc+abd+acd+bcd								
Notice in this example X OR Y=X XOR Y \rightarrow X+Y=X \oplus Y								
Example 4 Assume X=ab+ac+ad+bc+bd+cd and Y=AB+AC+AD+BC+BD+CD X AND Y=ABcd+AbCd+AbcD+aBCd+aBcD+abCD X NAND Y=ABC+ABD+ACD+BCD+abc+abd+acd+bcd								

X OR Y =1 X NOR Y =0 X XOR Y=ABC+ABD+ACD+BCD+abc+abd+acd+bcd

Notice in this example X AND Y=X XOR Y \rightarrow XY=X \oplus Y

ExclusiveOR have many interesting properties see http://en.wikipedia.org/wiki/Exclusive_or $XOR=\oplus$ with Boolean Calculator you can easily investigate some like

 $(A \oplus B) \oplus (C \oplus D) = ABCd + abcD$ $(A \oplus B) \oplus A = B$ $(A \oplus B) \oplus B = A$ $A \oplus b = NOT(A \oplus B)$ $(A \oplus B) = (a \oplus b)$ $(A \oplus B) \oplus CD = ABCD + Abc + Abd + aBc + aBd + abCD$ $(A \oplus B) \oplus (C+D) = ABC + ABD + Abcd + aBcd + abC + abD$ $(A \oplus B) \oplus (A+B) = AB$ $(A \oplus B) \oplus (A+B) = AB$ $(A \oplus B) \oplus AB = A + B$ $(ABCD + abcd) \oplus (A + B + C + D) = a + b + c + d$ $(ABCD + abcd) \oplus (a + b + c + d) = A + B + C + D$ $ABCD \oplus abcd = ABCD + abcd$

.....

In general if you define n Boolean single variables A_i

$$\mathbf{P} = (\prod_{i=1}^{n} \mathbf{A}_{i}) \mathbf{Y} (\prod_{i=1}^{n} \overline{\mathbf{A}}_{i})$$

Then

$$(\sum_{i=1}^{n} \overline{A}_{i}) \prod (\sum_{i=1}^{n} A_{i}) = \overline{P}$$

example

 $P = \overline{A}.\overline{B}.\overline{C}.\overline{D} + A.B.C.D \text{ then } (\overline{A} + \overline{B} + \overline{C} + \overline{D}).(A + B + C + D) = \overline{P}$

If you have any questions or comments and report a bug please contact motahed1@yahoo.com

Kmap3 is a Freeware program - source code not available

Download program

Documentation(DOC)

Documentation(PDF)